
Project

Learning - Based Medical Image Registration

by: Jayashri Masilamani



Abstract

Medical image registration is the alignment of two or more medical images. Information
gained from the two images are usually used for efficient diagnostic and therapeutic purposes.
Recent advancement in deep learning research and computational efficiency provides a way
to design a recurrent neural network (RNN) as optimizer that can replace the hand-designed
optimizers like gradient descent to perform the medical image registration task. Major
problem to implement this approach is to train the RNN optimizer for the given input
images. To overcome the training problem, State of the art reinforcement learning (RL)
algorithm called Proximal Policy Optimization (PPO) algorithm is used with RNN variant
called Long-short term memory (LSTM) network to design the optimizer. Then, various
analytical experiments were carried out with the PPO-LSTM optimizer to understand
its performance and learn its capability. Finally, the 2D-2D image registration task is
implemented with the PPO-LSTM optimizer and the performances of the experiments are
analysed.

i



Task of the Thesis in the Original:

ii



Contents

1 Introduction 7

2 Background 8
2.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Registration Components . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Rigid Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Normalized Correlation Coefficient (NCC) . . . . . . . . . . . . . . 11
2.1.7 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Deep Learning / Deep Neural Networks . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Neural Network as Function approximation in Reinforcement Learning 11
2.2.3 Recurrent Neural Networks (RNN) . . . . . . . . . . . . . . . . . . 12
2.2.4 The Problem of Long-Term Dependencies in RNN . . . . . . . . . . 13
2.2.5 LSTM Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 The Core Idea Behind LSTMs . . . . . . . . . . . . . . . . . . . . . 14
2.2.7 LSTM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Reinforcement Learning Problem . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 The episodic reinforcement learning problem . . . . . . . . . . . . . 18
2.3.4 Partially observed problems . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Policy Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.6 REINFORCE (Baseline) . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.7 Actor Critic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.8 Advantage Function . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Related Work 23
3.1 Learning to learn (L2L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



Contents

3.2 Black box Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Training of Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Design 30
4.1 Proximal Policy Optimization Algorithms(PPO) . . . . . . . . . . . . . . . 30

4.1.1 Trust Region Methods . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Clipped Surrogate Objective . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Implementation 35
5.1 PPO (pseudocode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 OpenAI Gym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 GYM Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Programming Language and libraries . . . . . . . . . . . . . . . . . . . . . 37

6 Experiments 38
6.1 Linear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 2D-Quadratic function (continuous Actions) . . . . . . . . . . . . . 38
6.1.2 1D-Quadratic function (Discrete Actions) . . . . . . . . . . . . . . . 39
6.1.3 2D-Quadratic function (Discrete Actions) . . . . . . . . . . . . . . . 40
6.1.4 Rosenbrock Function . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.5 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Discussion 44
7.0.1 Learning Rate and Epsilon Decays . . . . . . . . . . . . . . . . . . 44
7.0.2 1D-Quadratic function (Continuous Actions) . . . . . . . . . . . . . 44
7.0.3 1D-Quadratic function (Discrete Actions) . . . . . . . . . . . . . . . 44
7.0.4 2D-Quadratic function (Discrete Actions) . . . . . . . . . . . . . . . 44
7.0.5 Rosenbrock Function . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.0.6 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Future 52

Bibliography 53

2



List of Acronyms

CT Computed Tomography

MR Magnetic Resonance

SPECT Single-Photon Emission Computed Tomography

PET Photon Emission Computed Tomography

DOF Degree of Freedom

PDF Portable Document Format

NCC Normalized Correlation Coefficient

LSTM Long Short-Term Memory networks

RNN Recurrent Neural Networks

GRU Gated Recurrent Unit

RL Reinforcement Learning

MDP Markov Decision Process

POMDP Partially observed Markov decision process

MLE Maximum Likelihood Estimate

L2L Learning to learn

SGD Stochastic Gradient Descentt

CMEAS Covariance Matrix Adaptation Evolution Strategy

TRPO Trust Region Policy Optimization

PPO Proximal policy optimization

AI Artificial Intelligence

3



List of Figures

1.1 Block diagram represents the steps involved in image registration task . . . 7

2.1 image-reg-diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Recurrent Neural Networks Unit [cite] . . . . . . . . . . . . . . . . . . . . 12
2.3 An unrolled standard RNN [cite] . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The unrolled LSTM with four interacting layers [cite] . . . . . . . . . . . . 14
2.5 LSTM Unit with forget gate layer is highlighted . . . . . . . . . . . . . . . 15
2.6 LSTM Unit with input gate and tanh layer are highlighted . . . . . . . . . 15
2.7 LSTM Unit with update gate layer is highlighted . . . . . . . . . . . . . . 16
2.8 LSTM Unit with output gate layer is highlighted . . . . . . . . . . . . . . 16
2.9 Agent - Environment interaction in a Markov decision process. . . . . . . . 17

3.1 The optimizer (left) is provided with performance of the optimizee (right)
and proposes updates to increase the optimizee’s performance. . . . . . . . 23

3.2 Computational graph used for computing the gradient of the optimizer [cite]. 24
3.3 Computational graph of the learned black-box optimizer unrolled over

multiple steps. The learning process will consist of differentiating the given
loss with respect to the RNN parameters . . . . . . . . . . . . . . . . . . . 26

3.4 A set of figures to visually illustrate how it uses the results from the current
generation (g) to construct the solutions in the next generation (g+1) . . . 28

3.5 Contour plot of Adam [left] and L2L (RNN) [right] Optimizer. . . . . . . . 29
3.6 Iteration vs Cost Function of synthetic 2-dimensional quadratic functions. . 29

4.1 Plot showing a single a single timestep of the surrogate function LCLIP as a
function of the probability ratio r, for positive advantages(left) and negative
advantages(right). The red circle on each plot represents the starting point
for the optimization, i.e., r =1 . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Rendering of 1D-Quadratic function (Continuous Actions) . . . . . . . . . 39
6.2 Rendering of 2D-Quadratic function (Discrete Actions) . . . . . . . . . . . 40
6.3 Rendering of Rosenbrock function (Discrete Actions) . . . . . . . . . . . . 41
6.4 Rendering of 2D-2D image registration . . . . . . . . . . . . . . . . . . . . 43

7.1 Types of Learning rate used in the experiments: constant, linear and step. 44
7.2 Types of Epsilon decays used in the experiments: constant, linear and step. 44

4



List of Figures

7.3 Reward Summary of Quadratic-1D(continuous actions) function: Normal
scale[top] and log scale[dowm] . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.4 Linear learning rate and epsilon decays are used to train the network in
this experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.5 Histogram of 1D-Quadratic environment (continuous actions) using trained
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.6 Reward Summary of Quadratic-1D(discrete actions) function. . . . . . . . 46
7.7 Linear learning rate and epsilon decays are used to train the network in

this experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.8 Histogram of 1D-Quadratic environment (discrete actions) using trained

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.9 Reward Summary of Quadratic-2D (discrete actions) function. . . . . . . . 47
7.10 Step learning rate and epsilon decays are used to train the network in this

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.11 Histogram of 2D-Quadratic environment (discrete actions) using trained

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.12 Reward Summary of Rosenbrock (discrete actions) function. . . . . . . . . 48
7.13 Step learning rate and epsilon decays are used to train the network in this

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.14 Histogram of Rosenbrock environment (discrete actions) using trained network. 50

5



List of Tables

5.1 Libraries and versions used in the experiment . . . . . . . . . . . . . . . . 37

7.1 1D-Quadratic function (continuous Actions). . . . . . . . . . . . . . . . . . 49
7.2 1D-Quadratic function (Discrete Actions) . . . . . . . . . . . . . . . . . . . 49
7.3 2D-Quadratic function (Discrete Actions) . . . . . . . . . . . . . . . . . . . 50
7.4 Rosenbrock Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6



1 Introduction

The introduction should present the topic of the thesis to specify the purpose and impor-
tance of the work. Other possible contents of an introduction are described in section ??
on page ??.

Figure 1.1: Block diagram represents the steps involved in image registration task

7



2 Background

2.1 Image Registration

2.1.1 Introduction

Image registration is the process of finding a geometrical transformation that aligns two
images so that corresponding voxels/pixels can be superimposed on each other. Image
registration is a crucial part for image analysis and accurate integration (or fusion) of
the useful information from two or more images is very important. In the medical field,
medical image registration applications occur throughout the clinical track of events;
not only within clinical diagnostics settings, but prominently so in the area of planning,
consummation, and evaluation of surgical and radio-therapeutic procedures like image-
guided radiation therapy, image-guided radiation surgery, and image- guided minimally
invasive treatments. Common tomographic modalities that acquire three-dimensional
images are computed tomography (CT), magnetic resonance (MR) imaging, single-photon
emission computed tomography (SPECT), and positron emission tomography (PET). These
modalities contain contiguous set of two-dimensional slices provides a three-dimensional
array of image intensity values. Typical two-dimensional images may be x-ray projections
captured on film or as a digital radiograph. In all cases, primarily digital images stored as
discrete arrays of intensity values. The two images are typically acquired from the same
patient, in which case the problem is that of intra-patient registration, but inter-patient
registration has application as well. Medical image registration techniques correlate the
images acquired from different temporal and spatial sources and matches the anatomical
points to allow a physician to obtain improved and detailed information. Variables like
imaging principles and modalities, sampling time, and the physical state of a patient need
to be considered when processing medical data because it impacts the image resolution.

2.1.2 Mathematical Background

Medical image registration techniques involve two input images: One image is defined as
fixed image FIX(x) and another image is defined as moving image MOV(x). x represents
the n-dimensional position in the image. A transform T(x) is a mathematical function
which does the spatial mapping of points from the fixed image to points in the moving
image. Thus, transform establishes the correspondence for each pixel in the fixed image
to a position in the moving image. A similarity metric provides a measure of how well
the fixed image matches the moving image. This measure forms a quantitative criterion

8



2 Background

to be optimized by an optimizer over the search space defined by the parameters of the
transform. Combining the above part and the digital image technology, the registration
procedure is formulated as an optimization problem in which a cost function C is minimized
with respect to T. The optimizer adjusts the parameters of the transform in a way that
minimizes the difference between the two images. The metric is a key component in the
registration process. It uses information from the fixed and moving image to compute a
similarity value. The derivative of this value tells us in which direction we should move
the moving image for better alignment. The moving image is moved in small steps, and
this process is repeated until a convergence criterion is met. The metric can use pixel
intensities, point positions, pre-computed image features or anything we might want to
optimize. We just have to define a metric for it. Sometimes a regularization term is added
to the cost function to penalize unwanted transformations.

Figure 2.1: image-reg-diagram

2.1.3 Registration Components

In this section we introduce common terminology and some of the choices for different
types of components.

Transforms

The choice of transform is the important factor for the success of image registration. The
transform implies the desired type of transformation and constrain the solution space to
that type of deformation. For example, in the case of registering the bones it would be
sufficient only rigid transformations, but the cross-sectional study demands more flexible
transformation models so that normal anatomical variability between patients will be taken
in to consideration. The degree of freedom (DOF) of the transformation is determines
to the number of parameters of the transform. DOF hugely varies from depending upon
the registration method. For a simple registration like 3D translation, DOF is 3 and to

9



2 Background

anywhere between hundreds and millions of DOFs for b-spline deformation fields and
non-parametric methods. It is often a good idea to start with simple transforms and
propagate solutions through transforms of gradually increasing complexity.

2.1.4 Rigid Registration

In this thesis, we are going to use rigid registration for spine images. Rigid registration or
Rigid transformations, or rigid mappings is one of the simplest of methods which belongs
to the category of linear transformation models. Rigid-body transformations consist of
only rotations and translations. When the registration problem is between the images of
same patient with merely taken in different positions, then just translation and rotations
are enough to describe the required registration. This is called rigid transformation. Rigid
registration preserves the straightness of lines (and the planarity of surfaces) and all angles
between straight lines.

2.1.5 Metrics

The similarity metric gives a value which tells about the degree of similarity between the
moving and fixed image and is a key component in the registration process. The metric
samples intensity values from the fixed and transformed moving image and evaluates
the fitness value and derivatives This value will be given to the optimizer. Selecting an
appropriate metric is highly dependent on the registration problem to be solved. For
example, some metrics have a large capture range while others require initialization
close to the optimal position. In addition, some metrics are only suitable for comparing
images obtained from the same imaging modality, while others can handle inter-modality
comparisons. There are no -¬-clear-cut rules as to how to choose a metric and it may
require a trial-and-error process to find the best metric for a given problem. The Mean
Squared Difference (SSD) metric computes the mean squared pixel-wise intensity differences
between the fixed and moving images. The optimal value of the metric is zero. Poor
matches are result in large values of the metric. The metric samples intensity values from
the fixed and transformed moving image and evaluates the fitness value and derivatives,
which are passed to the optimizer. This metric relies on the assumption that intensity
representing the same homologous point must be the same in both images and only
suited for two images with the same intensity distributions, i.e. for images from the same
modality. Normalized Correlation Coefficient (NCC) computes pixel-wise cross-correlation
normalized by the square root of the autocorrelation of the images. The metric is invariant
to linear differences between intensity distributions and is therefore particularly well
suited for intra-modal CT registration where intensity scales are always related by a linear
transform even between scanners. This metric produces a cost function with sharp peaks
and well-defined minima, but therefore has a relatively small capture radius.

10



2 Background

2.1.6 Normalized Correlation Coefficient (NCC)

The SSD measure makes the implicit assumption that after registration the images differ
only by Gaussian noise. The cross-correlation is based on the assumption that there is
a linear relation between the intensities of the corresponding structures in both images.
Thus, the larger the cross- correlation is, the better the registered image is.

CrossCorrelation =
∑
i(A(i)− Ã)(B(i)− B̃)√∑

i(A(i)− Ã)2∑
i(B(i)− B̃)2

(2.1)

2.1.7 Optimizers

The objective of optimization is to determine the values for a set of parameters for which
some function of the parameters is minimized (or maximized). An iterative optimization
algorithm aims at reducing the search time in optimization in order to increase the time
sensitivity of the algorithm. One of the simplest cases involves determining the optimum
parameters for a model in order to minimize the sum of squared differences between a model
and a set of real-world data (χ2).The usual approach is to make an initial parameter estimate
and begin iteratively searching from there. At each iteration, the model is evaluated using
the current parameter estimates, and (χ2) computed. A judgement is then made about
how the parameter estimates should be modified, before continuing on to the next iteration.
The optimization is terminated when some convergence criterion is achieved (usually
when (χ2) stops decreasing). Common optimizers are Gradient Descent (GD), Robbins-
Monroe (RM), Adaptive Stochastic Gradient Descent (ASGD), Conjugate Gradient (CG),
Conjugate Gradient FRPR, Quasi-Newton LBFGS, Simultaneous Perturbation (SP),
CMAEvolutionStrategy.

2.2 Deep Learning / Deep Neural Networks

2.2.1 Introduction

Deep Neural networks are a set of algorithms, modeled loosely after the human brain,
which are very efficient to recognize pattern without the need of hand-made features. The
patterns they recognize are commonly from images, sound, text or time series. The ‘Deep’
in Deep Neural networks refers a large number of layers between input and output. Each
layer contains many units with weights and biases, with which the neural network improves
its ability to approximate more complex functions.

2.2.2 Neural Network as Function approximation in Reinforcement Learning

In this thesis as described in previous chapter, we use the neural networks as function
approximation in reinforcement learning by considering its use in estimating the value

11



2 Background

function and policy approximation. The approximate value and policy function is repre-
sented as a parameterized functional form with weight vector w ∈ Rd. As our goal is to
learning to learn approach for training recurrent neural networks to perform black-box
global optimization in various tasks. It would be important to understand the basics and
nuances of the recurrent neural network. The recurrent network that is used in this thesis
is called LSTM which stands for Long Short-Term Memory networks. A brief walkthrough
of recurrent neural network and its variant called LSTM are as follows:

2.2.3 Recurrent Neural Networks (RNN)

Recurrent nets are a type of artificial neural network that are designed to recognize patterns
in sequences of data such as time series, sensor data etc. The input of RNN is not just the
current input but also it considers the inputs that they perceived previously in time. RNN
are networks with loops in them, which allows past and current information to persist in
each time step.

Figure 2.2: Recurrent Neural Networks Unit [cite]

Figure 2.3: An unrolled standard RNN [cite]

RNN preserves sequential information in the hidden state so in each time step the
information in hidden state influence the processing of new input. It is finding correlations
between events separated by many moments, and these correlations are called “long-term
dependencies”. So, we can picture as network that share weights over time.

12



2 Background

The process of carrying memory forward by hidden state can be expressed mathemati-
cally:

ht = φ(Wxt + Uht−1) (2.2)

ht represents the hidden state at time step t. As shown above, hidden state is the
function of the input at the same time step xt, multiplied by a weight matrix W added to
the hidden state of the previous time step ht−1 which is multiplied by its own hidden -
to-hidden-state matrix U, which is also called as transition matrix. The weight matrices
act like a filter that estimate how much importance to allot to both the present input
and the past hidden state. The error they produce will return back via backpropagation
and be used to adjust their weights until minimum error that the network can reach. The
squashing function φ used on the summation of the weight input and hidden state - either
a logistic sigmoid function or tanh. The squashing function will efficiently condense the
very large or small values given into a value in logistic space. Thus, makes the gradients
values workable for backpropagation.

As this feedback loop occurs at every time step in the series, each hidden state contains
traces not only of the previous hidden state, but also of all those that preceded ht−1 for as
long as memory can persist.

2.2.4 The Problem of Long-Term Dependencies in RNN

Recurrent nets seek to establish connections between a final output and events many time
steps it has seen before. but RNN finds it very difficult to know how much importance
to accord to remote inputs. When the distance in time steps between the information
acquired by network and the place where it’s needed is small, RNN can efficiently correlate
the information with the task. For example, the task where RNN has to look back some
recent information. Then it can learn from the information and perform the task pretty
easily. But when the gap between the relevant information and the point where it is
needed is very large, RNNs become unable to learn to connect the information. In theory,
RNNs are absolutely capable of handling such “long-term dependencies.” Unfortunately,
in practice, RNNs don’t seem to be able to learn them. This is partially because the
information flowing through neural nets passes through many stages of multiplication.
This series of multiplication of weights in each step results in two main problems called
Exploding gradients and Vanishing gradients. Exploding gradients can be solved relatively
easily, because they can be truncated or squashed. Vanishing gradients can become too
small for computers to work with or for networks to learn – a harder problem to solve.
The above constraints of RNN can be successfully eliminated by LSTM networks.

13



2 Background

2.2.5 LSTM Networks

LSTMs are proposed by the German researchers Sepp Hochreiter and Juergen Schmidhuber
as a solution to the vanishing gradient problem. LSTMs also have this chain like structure,
but the repeating module has a different structure. Instead of having a single neural
network layer, there are four, interacting in a very special way called gated cells.

Figure 2.4: The unrolled LSTM with four interacting layers [cite]

2.2.6 The Core Idea Behind LSTMs

The key to LSTMs is the cell state, the horizontal line running through the top of the
diagram. The cell state acts like a conveyor belt. It runs straight down the entire LSTM
chain, with only some minor linear interactions. The LSTM does have the ability to
remove or add information to the cell state, carefully regulated by structures called gates.
These gates are analog, implemented with element-wise multiplication by sigmoid, which
are all in the range of 0-1. Thus, makes it differentiable, and therefore suitable for back
propagation. An LSTM has three of these gates, to protect and control the cell state.

LSTMs helps to preserve the error that can be back-propagated through time and layers.
By maintaining error of some acceptable range, they allow recurrent nets to continue to
learn over many time steps (over 1000), thereby it can link causes and effects remotely.
The gates act on the signals they receive, they block or pass on information based on
its strength and import, which they filter with their own sets of weights. Those weights,
like the weights that modulate input and hidden states, are adjusted via the recurrent
networks learning process. That is, the cells learn when to allow data to enter, leave or
be deleted through the iterative process of making guesses, back-propagating error, and
adjusting weights via gradient descent.

2.2.7 LSTM Architecture

The first step in LSTM is the flow of input and hidden unit values to the forget gate layer
which consist of sigmoid layer decide what information are going to be thrown away from
the cell state. The input of forget gate are ht−1 and xt and it outputs a number between 0

14



2 Background

and 1 for each member in the cell state Ct−1, where 1 represents “completely keep this
information” while a 0 represents “completely get rid of this.”

Figure 2.5: LSTM Unit with forget gate layer is highlighted

ft = σ(Wf · [ht−1, xt] + bf ) (2.3)

The next step in the lstm cell is input gate layer which decides what new information are
going to be stored in the cell state. The input gate layer has two parts. First, a sigmoid
layer called the “input gate layer” decides which values we’ll update. Next, a tanh layer
creates a vector of new candidate values, Ct , that could be added to the state.

Figure 2.6: LSTM Unit with input gate and tanh layer are highlighted

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(2.4)

In the next step, input gate layer and new candidate values are combined to create an
update to the state. The new candidate values are created by the multiply the old state
by ft Then add it with the multiplication of input gate and new candidate values (it ∗ Ct).

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.5)

15



2 Background

Figure 2.7: LSTM Unit with update gate layer is highlighted

Final step is the output gate, which decides what values are going to output. The
output will be the filtered version of cell state. First, the hidden state value and input
value is passed to sigmoid layer which decides what parts of the cell state are going to
output. Then, the cell state is passed through tanh (whose values to be between minus 1
and 1) and multiply it by the output of the sigmoid gate, Thus, only the parts decided are
passed to the output or next hidden state.

Figure 2.8: LSTM Unit with output gate layer is highlighted

Ot = σ(Wo · [ht−1, xt] + bo) (2.6)

ht = Ot ∗ tanh(Ct) (2.7)

2.2.8 Conclusion

These are only a few of the most notable LSTM variants. The most popular LSTM variant
was introduced by Gers and Schmidhuber (2000), which has “peephole connections.” These
connections let the gate layers look at the cell state. Another variation is the coupled forget

16



2 Background

and input gates. Instead of separately deciding what to forget and what new information
to be added, it makes the decisions together. The network only forget when its going
to input something in its place. A slightly more dramatic variation on the LSTM is the
Gated Recurrent Unit, or GRU, introduced by Cho, et al. (2014). It combines the forget
and input gates into a single “update gate.” It also merges the cell state and hidden state
and makes some other changes. The resulting model is simpler and popular than the
standard LSTM models. Attention network are more popular recently which is considered
as next generation recurrent networks.

2.3 The Reinforcement Learning Problem

2.3.1 Introduction

Reinforcement Learning (RL) is a sub-class of machine learning domain. RL is a learning
problem where the goal is to maximize a long-term reward. The RL system consists of an
agent which interacts with the environment by taking an action and receives a reward.
This transitions the agent into a new state. For each action, the environment feedbacks a
new state and reward to the agent which can be seen in the following figure.

Figure 2.9: Agent - Environment interaction in a Markov decision process.

The main assumption of RL is The Reward Hypothesis which states that all goals and
purposes of an agent can be explained by a single scalar called the reward.

The Reward Hypothesis: Maximization of the expected value of the cumulative sum
of a received scalar signal (called reward).
Defining the right set of rewards for a given problem is called as reward shaping. More
formally, we look at the Markov Decision Process framework.

2.3.2 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework that explains the interac-
tion of an agent with a stochastic environment. This gives rise to a sequence of states,

17



2 Background

actions and rewards known as a trajectory and the objective is to maximize this set of
rewards.

S0, A0, R1, S1, A1, R2 (2.8)

Markov decision process (MDP) composes of following elements:

S,A, P, r, ρ0, γ (2.9)

MDP is defined by the following components:

• S: state space, a set of states of the environment.

• A: action space, a set of actions, which the agent selects at each time step.

• P (r, s’ | s, a): a transition probability distribution. For each state s and action,
a, P defines the probability distribution of environment which emits reward r and
transition to state (s’) accordingly.

An agent (e.g. RL Agent) observes the environment and takes actions. Rewards are
given out, but they may be infrequent and delayed. Very often, the long-delayed rewards
make it extremely hard to analyze the information and traceback what sequence of actions
contributed to the rewards.

Policy: Agent’s goal is to find a policy π, which maps states to actions. A policy is
defined as the probability distribution of actions given a state.

π(At = a | St = s)

∀At ∈ A(s), St ∈ S
(2.10)

2.3.3 The episodic reinforcement learning problem

The tasks of this thesis are structured on episodic setting of reinforcement learning. An
episode would consist of certain number of states, actions and rewards can explain agents
experience with the environment. If the agent has access to all the states of environment,
episodes of the reinforcement learning can be described in the following process. The
first step of episode is sampling of initial state of the environment, s0, from distribution
µ(s0). Then the agent selects an action at, sampled from the policy distribution. For the
chosen action, environment gives out the next state and reward which depends on some
distribution P (st+1, rt | st, at). An episode ends when it reaches the terminal state sT .
The episodic process can be explained by the following equations:

s0 ← µ(s0)
a0 ← π(a0 | s0)

18



2 Background

s1, r0 ← P (s1, r0 | s0, a0)
a1 ← π(a1 | s1)
s2, r1 ← P (s2, r1 | s1, a1)
....
aT−1 ← π(aT−1 | sT−1)
sT−1, rT−1 ← P (sT | sT−1, aT−1)

2.3.4 Partially observed problems

It is usual that agent has access only to an observation at each time step, which may give
noisy and incomplete information about the state. The agent should consider information
from many previous time steps, so the action picked by the agent depends on the past
history i.e. past states and actions ht = (y0, a0, y1, a1, ...., yt−1, at−1, yt) and µ is the initial
state distribution. The data-generating process is given by the following equations, and
the figure below.
s0, y0 ← µ0

a0 ← π(a0 | h0)
s1, y1, r0 ← P (s1, y1 | s0, a0)
a1 ← π(a1 | h1)
s2, r1 ← P (s2, y2, r1 | s1, a1)
....
aT−1 ← π(aT−1 | hT−1)
sT , yT ← P (sT , yT , rT−1 | sT−1, aT−1)

This process is called a Partially observed Markov decision process (POMDP). As we
substitute Observation history ht as the state of the system, we can consider partially-
observed setting as the fully-observed setting. So POMDP can be expressed as an MDP
(with infinite state space). When using function approximation, the partially observed
setting is much closer with the fully-observed setting conceptually.

2.3.5 Policy Gradients

Policy gradients is one of the popular RL method. The objective of this method is to
maximize the “expected” reward when following a policy π. The policy πθ is defined
by a set of parameters . The total reward for a given trajectory τ can be expressed as
r(τ). The objective J(θ) is defined as the maximum ‘expected’ reward following a certain
parametrized policy πθ.

J(θ) = Eπ[r(τ)] (2.11)

19



2 Background

All finite MDPs have at least one optimal policy (which can give the maximum reward)
and among all the optimal policies at least one is stationary and deterministic.
To find the best objective J, we have to optimize the parameters to its best value. A

standard approach to solve this maximization problem in Machine Learning Literature is
to use Gradient Ascent. Because the parameter must improve the reward to the maximum
value. In gradient ascent, we use gradient of objective function to keep stepping through
the parameters by using following update rule.

θt−1 = θt + α∇J(θt) (2.12)

The gradient of the objective function J(θ) involves the expectation. Integrals usually
make the computational setting complicated. It can be eliminated by expanding the
expectation terms.

∇Eπθ [r(τ)] = ∇
∫
π(τ)r(τ)dτ

=
∫
∇π(τ)r(τ)dτ

=
∫
π(τ)∇logπ(τ)dτ

(2.13)

∇Eπθ [r(τ)] = Eπθ [r(τ)∇logπ(τ)] (2.14)

The Policy Gradient Theorem: The derivative of the expected reward is the
expectation of the product of the reward and gradient of the log of the policy .

∇Eπθ [r(τ)] = Eπθ [r(τ)∇logπ(τ)] (2.15)

Next, we need to expand πθ(τ) the quantity to derive a practical formula. Using the
chain rule of probabilities, we obtain

πθ[r(τ)] = µ(s0)π(a0 | s0, θ)P (s1, r0 | s0, a0)π(a1 | s1, θ)

P (s2, r1 | s1, a1)......π(aT−1 | sT−1, θ)), P (sT , rT−1 | sT−1, aT−1)
(2.16)

where µ is the initial state distribution.When we take the logarithm on both sides,
the product turns into a sum, and when we differentiate with respect to π, the terms
P (sT , rT−1 | sT−1, aT−1) and µ(s0) drops. Thus, We obtain

∇Eπθ [r(τ)] = Eπθ [
T−1∑
t=0
∇logπ(a1 | s1, θ)r(τ)] (2.17)

This result is remarkable that we can compute the policy gradient without knowing
anything about the system dynamics, which are encoded in transition probabilities P.
As a result, all algorithms that use this result are known as “Model-Free Algorithms”
because we don’t “model” the environment. The intuitive interpretation is that we collect

20



2 Background

a trajectory, and then increase its log-probability proportionally to its goodness. That is,
if the reward r(τ) is very high, we ought to move in the direction in parameter space that
increases logπ.
We can derive variants of this formula which is efficient by reducing variance of the reward.
Some of the methods are described below:

2.3.6 REINFORCE (Baseline)

We can imagine the RL objective defined above as Likelihood Maximization (Maximum
Likelihood Estimate). In an MLE setting, no matter how bad initial estimates are, in the
limit of data, the model will converge to the true parameters. However, in a setting where
the data samples are of high variance, stabilizing the model parameters can be extremely
hard. In our case, any sample trajectory can cause a sub-optimal shift in the policy
distribution. This problem is even worsened by the scale of rewards. Consequently, we
instead try to optimize for the difference in rewards by introducing another variable called
baseline b. To keep the gradient estimate unbiased, the baseline has to be independent of
the policy parameters.

∇Eπθ[r(τ)] = Eπθ
[(∑

(Gt − b)∇logπθ(at | st)
)]

(2.18)

A close choice of baseline is the state-value function,
State Value: State Value is defined as the expected returns given a state following the

policy π.

V (s) = Eπθ [Gt | St = s] (2.19)

2.3.7 Actor Critic Methods

Another variant of policy gradient method is Actor Critic Methods.Gradient methods use
a lot of samples to reach an optimal solution. Every time the policy is updated, we need to
resample. Similar to other deep learning methods, it takes many iterations to compute the
model. Actor critic model alleviates this problem to some extent.In this method, the actor
models the policy πθ and critic models the value function V. let us make approximate
that as well using parameters ω to make V ω(s). However, this time, we have to compute
gradients of both actor and critic. The objective of critic is generally taken to be the Mean
Squared Loss (or a less harsh Huber Loss) which needs to update the parameters ω of the
critic and the parameters are usually updated using Stochastic Gradient Descent. In this
method, we don’t collect all samples until the end of an episode. This Temporal Difference
technique also reduce variance.

21



2 Background

2.3.8 Advantage Function

In deep learning, gradient descent works better when features are zero-centered. Intuitively,
in RL, the absolute rewards may not be as important as how well an action does compare
with the average action. That is the concept of the advantage function A.

An advantage function A is the difference of Action-value function Q and State value
function V.

Aπ(st, at) = Qπ(st, at)− V π(st) (2.20)

Action-value function Q(s,a) measures the expected discounted rewards of taking an
action. For each state, if we can take k actions, there will be k Q-values. For optimal
result, we take the action with the highest Q-value.

a∗ = argmaxaQ
π(st, at) (2.21)

Actor-Critic Policy Gradient

∇Eπθ [r(τ)] = Eπθ
[
Aπ(st, at)∇logπθ(at | st)

]
(2.22)

Pseudocode

1. Agent takes action a ∼ πθ(a | s)

2. Update Value function V π(st)

3. Evaluate Advantage function Aπ(s, a)

4. Calculate Objective ∇Eπθ[r(τ)] = Eπθ[r(τ)∇logπθ(at | st)]

5. Update θt−1 = θt + α∇J(θt)

22



3 Related Work

3.1 Learning to learn (L2L)

This paper explains an interesting concept that can replace normally used for neural
network optimizers (e.g. Adam, RMSprop, SGD etc.) by a recurrent neural network. The
common optimization algorithm like gradient descent is basically a sequence of updates
(from the output layer of the neural net back to the input layer), in between which a state
must be stored. Hence, we can design an optimizer with RNN networks. The learned
algorithm is implemented by RNN variant called LSTM. Learning based algorithm tries
to automate the optimizer by learning to exploit the underlying structure of the problem
of interest.

Figure 3.1: The optimizer (left) is provided with performance of the optimizee (right) and
proposes updates to increase the optimizee’s performance.

The machine learning task can be defined as the problem of optimizing an objective
function f(θ) defined over some domain θ ∈ 	 . The optimizer has to find the minimizer
θ∗ i.e. θ∗ = argminθ∈	f(θ). The optimization algorithm that capable of finding this
minimizer for a differential function are iterative and makes a sequence of updates according
to the hand-designed update rules to reach the minimum.

θt+1 = θt − αt∇f(θt) (3.1)

The idea proposed in this paper is to replace hand-designed update rules with learned
update rule by utilizing LSTM capabilities. Let’s call LSTM optimizer g which has its
own set of parameters φ. Thus, we can modify update rule to the optimizee f of the form

θt+1 = θt − gt(∇f(θt), φ). (3.2)

23



3 Related Work

A high-level view of this process is shown in Figure 1. The recurrent neural network
(RNN)models the update rule g by maintaining its own states and updates the weights
as the function undergoes training iteratively. RNN-based learning algorithm performs
well on a particular class of optimization problems because in contrast to analytically
hand-designed optimizers, learning algorithms allows us to specify the class of problems
through example problem instances. As the algorithm trains over problem instances, it
generalizes well by gaining transfer knowledge between different problems. This ability is
called transfer learning.

Figure 3.2: Computational graph used for computing the gradient of the optimizer [cite].

3.1.1 Loss Function

The optimizer is parametrized as φ and the final optimizee parameters can be written
as θ∗(f, φ) which the function of optimizer is parameters φ and the function in question.
Given distribution of functions f the expected loss function can be written as

Lφ = Ef [f(θ∗(f, φ))] (3.3)

The update steps gt gets the value from the output of a recurrent neural network m
which is parameterized by φ and its hidden states are denoted by ht. The objective function
considers only the final parameter value to train the RNN optimizer. So, it is designed
that the objective function takes the entire trajectory of optimization of horizon T.

Lφ = Ef [
T∑
t=1

wtf(θ2)] (3.4)

where,
θt+1 = θt + gt gt

ht+1

 = m(∇t, ht, φ)

∇t = ∇θf(θt)

24



3 Related Work

The wt are random weights for each timestep. It’s better to set the last wt to 1 and
the rest to 0, we are optimizing for the best final result with our optimizee. This seems
reasonable, but it makes it much harder to train. Instead we will use wt = 1 for all t. In
the above set of equations, f is the optimizee function, and θt is its parameters at time t.
m is the optimizer function, φ is its parameters. ht is its state at time t. gt is the update
it outputs at time t. The plan is thus to use gradient descent on φ in order to minimize
L(φ), which should give us an optimizer that is capable of optimizing f efficiently.
picture!!!!! The above diagram represents the RNN optimizer which takes and passes

values to the optimizee. As the paper mention, it is important that the gradients in dashed
lines in the figure below are not propagated during gradient descent.

3.2 Black box Optimization

This paper is related to the above L2L paper. The black box optimization is performed by
training recurrent neural networks like LSTM as optimizer using learning to learn approach.
The optimizer is trained on various smooth target functions and learned optimizers are
allowed to learn the policies in reinforcement learning task and other black-box learning
tasks. The problem is constructed as finding a global minimizer of an unknown (black-box)
loss function f :

x∗ = argminx∈χf(x), (3.5)

where X is assumed as continuous search space. The black-box function f is not accessible
by the optimizer but can be evaluated at a query point x in the domain. The evaluation
gives out an output y ∈ R such that f(x) = [y|f(x)]. That is, the function can be
available to the optimizer only through the noisy point-wise observations y. A black-box
optimization algorithm is designed as the following steps:

1. Given the current state of knowledge ht black box gives out a query point xt.

2. Gets back the response yt from the function of interest.

3. Update any internal states and produce ht+1.

The above summarized steps can be designed using recurrent neural network (RNN)
parameterized by θ such that

ht, xt = RNNθ(ht−1, xt−1, yt−1), (3.6)

yt ∼ p[y|xt] (3.7)

25



3 Related Work

This can be seen as RNN updates its hidden state using data from the previous time
step and then propose a new query point to the function that to be optimized. RNN
can perform black-box optimization process iteratively with shared parameters. Figure 1
illustrates the computation of unrolled optimizer and cumulation of loss function.

Figure 3.3: Computational graph of the learned black-box optimizer unrolled over multiple
steps. The learning process will consist of differentiating the given loss with
respect to the RNN parameters

3.2.1 Training of Optimizer

The optimizer can be trained simply by taking derivative of the loss function with respect
to the RNN parameters θ and perform stochastic gradient descent (SGD). If the derivation
of f with respect to θ is not available during the training time available, then it would be
necessary to approximate these derivatives via an algorithm such as REINFORCE. The
experiments that has performed in this paper have shown that the RNNs are massively
faster than Bayesian optimization and RNN optimizers are recommended for applications
involving a known horizon or where speed matters. The paper also points out RNN
optimizers have shortcomings that Training for very long horizons is difficult.

3.3 Evolutionary Algorithm

CMEAS is the abbreviation of covariance matrix adaptation evolution strategy. The
principle of evolution algorithm is loosely based on biological evolution. The algorithm
provides the output a set of candidate solutions to evaluate a problem. An objective
function evaluates the given set of candidates and return a fitness value. Based on the
fitness results, the algorithm will then produce the next generation of candidate solutions
that is more likely to produce even better results than the current generation. The iterative
process will stop once the best-known solution is satisfactory for the user.

26



3 Related Work

In the simple evolution strategies, firstly a set of solutions from a normal distribution
with a mean µ and a fixed standard deviation µ will be sampled. The mean µ will be set
to origin initially. After the evaluation of fitness value, the best solution in the population
will be assigned as new mean value µ and next generation of solutions will be sampled
around this new mean.
Major variation of CMEAS from other evolution strategy is that after the results of

each generation in addition to adaptation of the mean µ and sigma σ parameters it also
adaptively increases or decreases the search space for the next generation. At the end of
each generation CMA-ES provides the parameters of a multi-variate normal distribution
from which next generation candidates will sample solutions from.
CMA-ES makes use of covariance calculation formula in a way it can adapt well to

an optimization problem which is describes as follows. Firstly, it considers only NBEST
solutions in the current generation where NBEST is set to 25% of the best solutions. After
calculating best solutions based on fitness value mean µ(g+1) of the next generation (g+1)
is calculated as the average of only the best 25% of the solutions in current population (g).
A set of equations below explains how to calculate the maximum likelihood estimate of a
covariance matrix CC.
We first calculate the means of each of the xi and yi in our population:

µ(g+1)
x = 1

Nbest

Nbest∑
i

xi (3.8)

µ(g+1)
y = 1

Nbest

Nbest∑
i

yi (3.9)

Next, we use only the best 25% of the solutions to estimate the covariance matrix
C(g + 1) of the next generation, but the clever hack here is that it uses the current
generation’s µ(g) rather than the updated µ(g+ 1) parameters that we had just calculated,
in the calculation:

σ2,(g+1)
x = 1

Nbest

Nbest∑
i

(xi − µ(g)
x )2, (3.10)

σ2,(g+1)
y = 1

Nbest

Nbest∑
i

(yi − µ(g)
y )2, (3.11)

σ2,(g+1)
xy = 1

Nbest

Nbest∑
i

(xi − µ(g)
x )(yi − µ(g)

y ), (3.12)

Armed with a set of µx, µy, σx, σxy, and σxy parameters for the next generation (g+1),
now the next generation of candidate solutions can be sampled. Below is a set of figures
to visually illustrate how it uses the results from the current generation (g) to construct

27



3 Related Work

the solutions in the next generation (g+1):

Figure 3.4: A set of figures to visually illustrate how it uses the results from the current
generation (g) to construct the solutions in the next generation (g+1)

1. Fitness score is calculated for each candidate solution in current generation (g).

2. Purple samples indicate the best 25% of the population in generation (g).

3. The Covariance matrix C(g+1) of the next generation is calculated using only 25%
of the the best solutions and the mean µ(g) of the current generation (the green
dot).

4. Sample a new set of candidate solutions using the updated mean µ(g+1) and
covariance matrix C(g+1)

Because CMA-ES can adapt both its mean and covariance matrix using information from
the best solutions, it can make the search space wider or narrower when the best solutions
are far away or closer respectively. The only real drawback is the performance efficiency,
the increase in the number of model parameters increases the computational complexity
of covariance calculation.

3.4 Experiments and Results

28



3 Related Work

Figure 3.5: Contour plot of Adam [left] and L2L (RNN) [right] Optimizer.

Figure 3.6: Iteration vs Cost Function of synthetic 2-dimensional quadratic functions.

29



4 Design

4.1 Proximal Policy Optimization Algorithms(PPO)

PPO is the latest member of the policy gradient methods in reinforcement learning, it
interacts with the environment and optimizes “clipped surrogate” objective function using
stochastic gradient ascent. Policy Gradient methods keeps the new and old policies in
parameter space as close as possible. But even small change in parameter space can result
a massive change in the algorithm performance. This tells us that even a single step
change of parameter has the ability to collapse the entire policy performance. This makes
the policy gradient methods dangerous to use large step sizes and it usually perform one
gradient update per data sample these issues result in worse sample efficiency. Variants of
policy gradients involves a second-order derivative matrix which makes it not scalable for
large scale problems. The computational complexity is too high for real tasks. Intensive
research is done to reduce the complexity by approximate the second-order method.
Trust Region Policy Optimization (TRPO) is one of the advanced and state of the

art policy gradient algorithm. It provides better solution for many drawbacks of PG
with its own disadvantages. TRPO tends to avoid the performance collapse and gives
monotonically improving performance.
Disadvantage of TRPO are:

1. TRPO uses second order optimization which is relatively complicated.

2. It not compatible with architectures that include noise such as dropout or parameter
sharing between the policy and value function, or with auxiliary tasks.

An algorithm was needed which provides monotonically improving performance i.e.,
each step in the training must be a constructive one. And also provide faster convergence,
the step size has to be larger one and importantly computational complexity must be low.

PPO was proposed to overcome the drawbacks of TRPO, and to reduce the algorithm
complexity. PPO has become the default reinforcement learning algorithm and go to
algorithms at biggest research organization like OpenAI and to everyone because of its
ease of use and good performance.

Proximal policy optimization (PPO) and Trust region policy optimization (TRPO) have
some similarity.PPO and TRPO methods have the stability and reliability of trust-region
methods but PPO is very simple to implement and have better empirical sample efficiency.
PPO architecture is simple and yet provides reliable performance improvement with the use

30



4 Design

of first order optimization. Instead of imposing a hard constraint like TRPO, it formalizes
the constraint as a penalty in the objective function and uses of first order optimization.
The novel surrogate objective function with clipped probability ratios is used in PPO,
which takes the pessimistic estimate of the function to avoid performance collapse and it
calculates the surrogate objective function in multiple epochs of mini-batch updates to
optimize the policy.
In paper[cite] PPO was compared to several previous algorithms from the literature.

It performed performs better than the other algorithms on continuous control tasks like
ATARI games. It was concluded that it performs significantly better in terms of sample
complexity than A2C and similarly to ACER though it is much simpler.

4.1.1 Trust Region Methods

TRPO optimizes the surrogate objective function by applying a hard constraint on the
size of the policy update. To eliminate the huge optimization step that ruins the training
progress, TRPO formulates the region of maximum step size to explore and then locate
the optimal point within this trust region.

maximum
θ

Êt

 πθ
(
at | st

)
πθold

(
at | st

)Ât


subject to Êt
[
KL

[
πθold

(
· | st

)
, πθ

(
· | st

)]]
≤ δ

(4.1)

Where δ is initial maximum step size which is the radius of the trust region and the
objective is to find the optimal point within the radius δ. The trust region can be expanded
or shrink in runtime to adjust to the curvature of the surface.Another variant of TRPO
uses penalty to solve the unconstrained optimization problem for some coefficient β . It
solves the function efficiently by using the conjugate gradient algorithm, after making a
linear approximation to the objective and a quadratic approximation to the constraint.

maximum
θ

Êt

 πθ
(
at | st

)
πθold

(
at | st

)Ât − βKL
[
πθold

(
· | st

)
, πθ

(
· | st

)] (4.2)

Mathematically, both KL penalized objective and the KL constrained objective are the
same if we have unlimited computational resources. However, in practice, they are not.
TRPO that uses a hard constraint δ is much easier than a penalty. δ imposes a hard

constraint to control the bad case scenarios in the policy space. δ restraints policy changes
that can turn destructive. The results show it is hard to select a single fixed value β that
perform better well across different problems or even within a single problem. As the
characteristics change over the course of learning β need to be more adaptive. Therefore,
trust region constraint is more popular. To optimize the penalized objective in Equation 5

31



4 Design

with SGD further modifications are required.

4.1.2 Clipped Surrogate Objective

PPO strikes a balance between ease of implementation, sample complexity, and ease of
tuning, trying to compute an update at each step that minimizes the cost function while
ensuring the deviation from the previous policy is relatively small. Instead of imposing a
hard constraint, PPO formalizes the constraint as a penalty in the objective function.This
objective implements a way to do a Trust Region update which can be used with first-order
optimizer like Stochastic Gradient Descent and simplifies the algorithm by removing the
KL penalty and need to make adaptive updates.Even we may violate the constraint once a
while, the damage is far less, and the computation is much simple. In its implementation,
we maintain two policy networks.
πθ is the current policy and πθold is the policy that we last used to collect samples.
With clipped objective, we compute a ratio between the new policy and the old policy:

Let rt(θ) denote the probability ratio. Algorithm has to maximize the surrogate objective.

rt(θ) =
 πθ

(
at | st

)
πθold

(
at | st

)
 (4.3)

Without a constraint, maximization of LCPI would lead to an excessively large policy
update. hence, we now consider how to modify the objective, to penalize changes to the
policy that move rt away from 1.

LCPI
(
θ
)

= Êt

 πθ
(
at | st

)
πθold

(
at | st

)Ât
 = Êt

[
rt(θ)Ât

]
(4.4)

But as we refine the current policy, the difference between the current and the old
policy is getting larger. The variance of the estimation will increase, and we will make
bad decision because of the inaccuracy. So, say for every 4 iterations, we synchronize the
second network with the refined policy again.

This ratio measures how difference between two policies. We construct a new objective
function to clip the estimated advantage function if the new policy is far away from the
old policy. Our new objective function becomes:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ε, 1 + ε

)
Ât

)]
(4.5)

In the above equation, the LCPI and clipped LCLIP compared and the minimum value
which is the lower bound of unclipped objective was taken. This implies the change in
probability ratio is not considered when it makes improvement in the objective and include
it when it makes the objective function worse.

32



4 Design

Let’s look at the dynamics of the equation for different advantage values.

Figure 4.1: Plot showing a single a single timestep of the surrogate function LCLIP as a
function of the probability ratio r, for positive advantages(left) and negative
advantages(right). The red circle on each plot represents the starting point for
the optimization, i.e., r =1

Figure plots a single term i.e., a single t in LCLIP note that the probability ratio r is
clipped at (1− ε) or (1 + ε), depending on whether the advantage is positive or negative. ε
is the hyper parameter which corresponds to how far the new policy can move away from
the old policy at the same time improving the objective.

Advantage is Positive: In this case the objective function is reduced to:

LCLIP (θ) = min

(
πθ(at | st)
πθold(at | st)

, (1 + ε)
)
Ât (4.6)

When the advantage is Positive, the objective will increase only if pi(theta) increases
which implies the action is more likely. The minimum operator in the equation limits the
increment range of objective to when the policy value goes above the ,

Advantage is Negative: In this case the objective function is reduced to:

LCLIP (θ) = max

(
πθ(at | st)
πθold(at | st)

, (1− ε)
)
Ât (4.7)

When the advantage is Negative, the objective will increase only if pi(theta) increases
which implies the action is less likely. The maximum operator in the equation limits
the increment range of objective to when the policy value goes away from the , If the
probability ratio between the new policy and the old policy falls outside the range , the
advantage function will be clipped. epsilon is set to 0.2 for the experiments in the PPO
paper.

33



4 Design

4.1.3 Algorithm

The above-mentioned surrogate loss can be implemented with typical policy gradient
implementation but with some modification. The surrogate loss simply can be constructed
the loss LCLIP and multiple steps of stochastic gradient ascent can be performed on it.
The PPO architecture shares parameters between the policy and value function so the loss
function consist of the policy surrogate and a value function error term.Usually, entropy
bonus is also added with the objective to provide sufficient exploration. After incorporating
the above discussed changes, the following objective function is obtained.

Lt
CLIP+V F+S

(
θ
)

= Êt
[
Lt

CLIP
(
θ
)
− c1Lt

V F
(
θ
)

+ c2S [πθ]
(
st
)]

(4.8)

where c1 , c2 are the coefficients, S is entropy bonus and LtV F is a squared-error loss.
The learned value function is also used for calculating advantage-function, the estimation

obtained using the value function highly reduce the variance of the advantage function.
Generalized advantage estimation Sch+15a , and the finite-horizon estimators in Mni+16
are the currently popular advantage estimation techniques. As the tasks in this thesis
uses recurrent neural networks, the policy gradient estimation used in Mni+16 which are
well suited for recurrent neural networks are used in this thesis. This estimation runs the
policy for T timesteps and importantly length of T is much less than the episode length
and uses the collected samples for an update. And a special type of advantage function
is needed for this style which does not look beyond timestep T. An advantage estimator
used Mni+16 can be suitable for this condition which is given below:

Ât = −V st + rt + γrt+1 + ....+ γT−t+1rT−1 + γT−tV (sT ) (4.9)

where t species the time index in [0, T], within a given length-T trajectory segment
Generalizing this choice, we can use a truncated version of generalized advantage estimation,
which reduces to Equation when lambda = 1

Ât = δt + (γλ)δt+1 + γrt+1 + ....+ ....+ (γλ)T−t+1δT + 1

where δt = rt + γV (st+1)− V st
(4.10)

4.1.4 Conclusion

Proximal policy optimization, a family of policy optimization methods is explained in
this chapter. It uses multiple epochs of stochastic gradient ascent to perform each policy
update. PPO is very simple and easy to implement and still preserves the comparable
stability and reliability as trust-region methods.The joint architecture of the policy and
value function can be implemented with only few lines of code change to a vanilla policy
gradient implementation and most importantly PPO has better overall performance.

34



5 Implementation

5.1 PPO (pseudocode)

Algorithm 1 PPO-Clip Algorithm
1: Input : Initialize policy parameter θ0, Initialize value function parameters φ0
2: for k=0,1,2.... do
3: Collect set of trajectories dk by running policy πk in the environment.
4: Compute reward R̃t

5: Compute Advantage function Ãt (using Generalized Advantage Estimate) based
on the current value function Vφk .

6: Update the policy by maximizing the PPO-Clip objective:
7:

θ = argmax
θ

1
|Dk|T

∑
r∈DK

T∑
t=0

[
min

(
rt(θ)Aπθk , clip

(
rt(θ), 1− ε, 1 + ε

)
Aπθk

)]

where,
8:

rt(θ) =
 πθ

(
at | st

)
πθk

(
at | st

)


typically via stochastic gradient ascent with Adam.
9: Fit value function by regression on mean-squared error:

10:

φk+1 = argmax
φ

1
|Dk|T

∑
r∈DK

T∑
t=0

(
Vφ
(
st
)
− R̃t

)2

,

typically via stochastic gradient descent algorithm.

5.2 OpenAI Gym

Gym is an OpenAI toolkit. It helps to create a better benchmark for reinforcement learning.
The gym library is a collection of test problems — environments — that you can use to
work out your reinforcement learning algorithms. The main aim of this tool is to increase
reproducibility in the field of AI and provide tools with which everyone can learn about
basics of AI. Gym doesn’t make any assumption about the structure of environment. Gym
is easy to set up and improves the reproducibility. Gym’s test environments work on RL
agent’s algorithms with shared interfaces allows to write general algorithms and testing
them. Gym is compatible with any numerical computation library, such as TensorFlow or
Theano.

35



5 Implementation

5.2.1 Spaces

Spaces are the attributes that are initialized in the beginning of the environment. There
are two kinds of spaces called action space and observation space. These attributes
are of type Space which provides the valid format for the actions and observations.
The Space can be either Discrete or Box.
The Discrete space allows a fixed range of non-negative numbers, so in this case valid

actions are either 0 or 1.
The Box space represents an n-dimensional box and it allows the variables to be

continuous. So valid values of action/observation must take a value in the given range of
n-dimensional space.

5.2.2 GYM Environment

There are 3 mandatory methods that must present in the gym environment which are
described below:

Reset

The process gets starts by calling reset(), which initializes observation values.

Step

This function receives an input variable ‘action’ which would be the command given by
RL algorithm. It would be a better to actually know how the input action influence the
dynamics of the environment. That’s exactly what the step function of the environment
returns for us. In fact, Step function returns four values. They are:

• Observation: Its an environment-specific object which represents the current
observation of the environment.

• Reward(float): This return value is the amount of reward achieved by the previous
action. The reward scale varies depending on the environment, but as we know the
goal of the algorithm is always to increase your total reward.

• Done: (Boolean): Done returns a Boolean value. It indicates whether it’s time
to reset the environment again. Usually, most of the tasks would be divided into
well-defined episodes. When the task reaches the end of the episode done will return
True.

• Info: Info is of dict type. Info contains diagnostic information useful for debugging.
The information can be helpful for learning purpose(for example, it might contain the
raw probabilities behind the environment’s last state change). But, the information
in the dictionary should not be used by agent for the learning of the environment.

36



5 Implementation

Render

Render function is used for the visualization of actions taken by the algorithm and
resulting changes in the environment. It can be used during evaluation to visualise the
learned algorithm. Rendering would allow us to visually analyse how well the algorithm
learned/learning the task. It also gives some insight about the dynamics of environment
like whether the algorithm correctly learned the tasks or reward values are efficiently
improves the learning.

5.3 Programming Language and libraries

PPO Algorithm is implemented in TensorFlow - python code.

Table 5.1: Libraries and versions used in the experiment
Hyperparameters Values
Python 3.7.3
TensorFlow 1.14.0
OpenAI Gym 0.13.1
NumPy 1.16.4
Matplotlib 3.1.0
Tqdm 4.32.2
Six 1.12.0
OpenCV(CV2) 3.4.2
Glob 2.26.2
Tensor board 1.14.0
SciPy 1.2.1

37



6 Experiments

6.1 Linear Functions

Quadratic function Quadratic function is a polynomial function in which the highest-degree
term is 2. Hence, it is also called a quadratic polynomial or polynomial of degree 2.

A quadratic polynomial may involve a single variable x (the univariate case), or multiple
variables (the multivariate case) [Wx− Y ]2 In elementary algebra, such polynomials often
arise in the form of a quadratic equation . [Wx− Y ]2 = 0.The solutions to this equation
are called the roots of the quadratic polynomial, and may be found through the use of the
quadratic formula.
Equation: [Wx− Y ]2 = 0
W- coefficients of x (weight)
Y - constant

6.1.1 2D-Quadratic function (continuous Actions)

Spaces

Action Space - Box space of (1,2) - Dimension, It’s a continuous action space of range
(-1, -1) to (1,1).
Observation space - Box space of (1,3) - Dimension. It’s a continuous observation space
of range (-1, -1,0) to (1,1, -18)

Step

Input variable ‘action’ - Discrete
Observation space - Box space of dimension (1,2). Input variable : ‘action’ from
algorithm - Discrete value range of 1 to 16. Increment = [0.05,-0.05,0.1, -0.1,0.4,-0.4,1.6,-
1.6] According to the action, X is added by the action indexed element of increment array.
1st element takes X value and 2nd value is the negative cost function calculated for X.
Reward : negative cost function Done - Bool, true when the cost is less than certain
threshold say 0.02

Reset

Resets Weights and bias. Resets Variable and make random predictions for first step.

38



6 Experiments

Render

Line plot cost function vs variable

Figure 6.1: Rendering of 1D-Quadratic function (Continuous Actions)

6.1.2 1D-Quadratic function (Discrete Actions)

Explain equation and constants and variable.

Reset

Resets Weights and bias. Resets Variable and make random predictions for first step.

Step

Input variable ‘action’ - Discrete. Observation Box space of dimension (1,2) Input variable
: ‘action’ from algorithm - Discrete value range of 1 to 16. Increment = [0.05,-0.05,0.1,
-0.1,0.4,-0.4,1.6,-1.6] According to the action, X is added by the action indexed element of
increment array. 1st element takes X value and 2nd value is the negative cost function
calculated for X. Reward negative cost function Done Bool, true when the cost is less than
certain threshold say 0.02

Render

Render function is as same as Continuous action Line plot cost function vs variable Image
learned 1D (discrete)

39



6 Experiments

6.1.3 2D-Quadratic function (Discrete Actions)

Reset

Reset Resets Weights and bias Resets Variable and make random predictions for first step

Step

Input variable ‘action’ - Discrete

Render

Contour plot - explains the trajectory of variables (reaches the minimum) for each episode
Image: learned 2D (discrete)

Figure 6.2: Rendering of 2D-Quadratic function (Discrete Actions)

6.1.4 Rosenbrock Function

Step

Observation space - Box space of (1,3) dimension It’s a continuous observation space of
range (-1,-1,0) to (1,1,-18) . Input variable : ‘action’ from algorithm - Discrete value range
of 1 to 16 Increment = [0.05,-0.05,0.1, -0.1,0.4,-0.4,1.6,-1.6] According to the action, X
is added by the action indexed element of increment array. 1st two element takes value
of X variable which the agent incremented wrt action and 3rd value is the negative cost
function calculated for the incremented value X.

40



6 Experiments

Reward negative cost function For the given input action negative cost function is
calculated
Done Condition - Bool, True when the cost is less than certain threshold say 0.02
Info No info about debugging is created

Reset

Resets Weights and bias Resets Variable and make random predictions for first step and
assigns to a variable X.

Render

Render function plots contour plot for each step TODO: put example contour plot

Figure 6.3: Rendering of Rosenbrock function (Discrete Actions)

6.1.5 Image Registration

Dataset

Maximum steps per episode – 30 Explain about Dataset The Dataset were acquired
from cadavers. The dataset 2D Dataset images consist of fluoroscopic and CT images
of the spine. There are images present in the dataset. The images are taken from the
different region of the spine. Dataset consist of images that has the following regions.
Lumbar, Head, Spine-thorax, Thoracic-cervical, Sacrum, Spine cervical , Spine lumbar,

41



6 Experiments

Spine lumbar thorax , Spine thorax cervical, Thoracic. Some of the above images also
have metal implants. For each fluoroscopic image has acquisition image so that both
images can be registered. In X-ray imaging, there are two acquisition modes, they are
called “fluoro” and “acquisition”. Both of them are transmission X-ray images. The main
difference is that the amount of radiation is much higher for acquisitions than for fluoro.
Usually, fluoros are used continuously like a video during the intervention, and acquisitions
are used only in highly important steps, such as during contrast agent injection or for
documentation of treatment results.
Only the 3d images are CT or CT-like, so if you only do 2d registration they are not

used.

Step

Input variable ‘action’ - Discrete Observation According to action, the moving image is
shifted and gradient correlation is calculated If the index is negative/out of range, penalty
is given

Reward if there is a penalty -> assigns to reward If no penalty reward -> GC Done
No done condition (assigns False)

Reset

Reads the two images to be registered (one fixed and 1 moving) Calculate gradient
correlation for the two images Return state value

Render

Checkerboard is created which tells interactively moves according to the action value.

42



6 Experiments

Figure 6.4: Rendering of 2D-2D image registration

43



7 Discussion

7.0.1 Learning Rate and Epsilon Decays

Figure 7.1: Types of Learning rate used in the experiments: constant, linear and step.

Figure 7.2: Types of Epsilon decays used in the experiments: constant, linear and step.

7.0.2 1D-Quadratic function (Continuous Actions)

7.0.3 1D-Quadratic function (Discrete Actions)(
w
) (

action
)
−
(
y
)

7.0.4 2D-Quadratic function (Discrete Actions)w1 w2
w3 w4

 action1
action2

−
y1
y2



7.0.5 Rosenbrock Function

(a− x)2 + b(y − x2)2 (7.1)

44



7 Discussion

Figure 7.3: Reward Summary of Quadratic-1D(continuous actions) function: Normal
scale[top] and log scale[dowm]

Figure 7.4: Linear learning rate and epsilon decays are used to train the network in this
experiment

45



7 Discussion

Figure 7.5: Histogram of 1D-Quadratic environment (continuous actions) using trained
network

Figure 7.6: Reward Summary of Quadratic-1D(discrete actions) function.

Figure 7.7: Linear learning rate and epsilon decays are used to train the network in this
experiment

46



7 Discussion

Figure 7.8: Histogram of 1D-Quadratic environment (discrete actions) using trained net-
work.

Figure 7.9: Reward Summary of Quadratic-2D (discrete actions) function.

Figure 7.10: Step learning rate and epsilon decays are used to train the network in this
experiment.

47



7 Discussion

Figure 7.11: Histogram of 2D-Quadratic environment (discrete actions) using trained
network.

Figure 7.12: Reward Summary of Rosenbrock (discrete actions) function.

Figure 7.13: Step learning rate and epsilon decays are used to train the network in this
experiment.

48



7 Discussion

Table 7.1: 1D-Quadratic function (continuous Actions).
Hyperparameters Values
Horizon 8096
Epoch 20
LSTM Unit 256
Minibatch 128
Clipped parameter (ε) 0.2
Discount (γ) 0.99
GAE (λ) 0.97
Number of actors 1
VF coef c1 0.1
Entropy coef c2 0.0
Epsilon Decay linear
Gradient clip 0.5

Table 7.2: 1D-Quadratic function (Discrete Actions)
Hyperparameters Values
Total step 500000
Horizon 2086
Epoch 10
LSTM Unit 256
Minibatch 64
Clipped parameter (ε) 0.3
Discount (γ) 0.99
GAE (λ) 0.97
Number of actors 1
VF coef c1 1.0
Entropy coef c2 0.0
Epsilon Decay linear
Gradient clip 0.5

7.0.6 Image Registration

49



7 Discussion

Table 7.3: 2D-Quadratic function (Discrete Actions)
Hyperparameters Values
Total step 2000000
Horizon 2096
Epoch 5
Minibatch 64
LSTM Unit 256
Clipped parameter (ε) 0.3
Discount (γ) 0.98
GAE (λ) 0.95
Number of actors 1
VF coef c1 0.3
Entropy coef c2 0.0
Epsilon Decay linear
Learning rate 0.003
Gradient clip 0.7

Figure 7.14: Histogram of Rosenbrock environment (discrete actions) using trained net-
work.

50



7 Discussion

Table 7.4: Rosenbrock Function
Hyperparameters Values
Total step 2000000
Horizon 2086
Epoch 5
Minibatch 64
LSTM Unit 256
Clipped parameter (ε) 0.3
Discount (γ) 0.98
GAE (λ) 0.95
Number of actors 1
VF coef c1 0.3
Entropy coef c2 0.0
Learning rate 0.003
Epsilon Decay step
Learning rate Decay step
Gradient clip 0.7

Table 7.5: Image Registration
Hyperparameters Values
Total step 2000000
Horizon 2086
Epoch 5
Minibatch 64
LSTM Unit 256
Clipped parameter (ε) 0.3
Discount (γ) 0.98
GAE (λ) 0.95
Number of actors 1
VF coef c1 0.3
Entropy coef c2 0.0
Learning rate 0.003
Epsilon Decay step
Learning rate Decay step
Gradient clip 0.7

51



8 Future

52



Bibliography

[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoff-
man, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas. Learning to
learn by gradient descent by gradient descent. Google DeepMind, arXiv:1606.04474v2
[cs.NE],2016.

[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov. Proximal
Policy Optimization Algorithms. OpenAI, arXiv:1707.06347v2 [cs.LG] ,2016.

[3] Yutian Chen Matthew, W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil,Timothy
P. Lillicrap, Nando de Freitas. Learning to Learn for Global Optimization of Black Box
Functions DeepMind, arXiv:1611.03824v1 [stat.ML],2017.

[4] John Schulman. Optimizing Expectations: From Deep Reinforcement Learning to
Stochastic Computation Graphs University of California at Berkeley, UCB/EECS-2016-
217,2016.

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, Massachusetts, 2018.

[6] Ian Goodfellow,Yoshua Bengio,Aaron Courville. Deep Learning. The MIT Press, Cam-
bridge, Massachusetts, 2016.
http://www.deeplearningbook.org

[7] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, Pieter Abbeel. Trust
Region Policy Optimization OpenAI, arXiv:1502.05477v5 [cs.LG],2015.

[8] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation University
of California at Berkeley, arXiv:1506.02438v6 [cs.LG],2015.

[9] Rui Liao,Li Zhang,Ying Sun,Shun Miao,Christophe Chefd’Hotel. Registration Tech-
niques IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 5, AUGUST
2013.

[10] Fakhre Alam, Sami Ur Rahman, Muhammad Hassan, Adnan Khalil. challenges in
medical image registration. J Postgrad Med Inst 2017; 31:224-33.

53

http://www.deeplearningbook.org


Bibliography

[11] Colah: Understanding LSTM Networks,
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[12] OpenAI:Gym,
https://gym.openai.com

[13] OpenAI: Spinning Up,
https://spinningup.openai.com/en/latest/

[14] A Visual Guide to Evolution Strategies,
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

54

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://gym.openai.com
https://spinningup.openai.com/en/latest/
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

	Introduction
	Background
	Image Registration
	Introduction
	Mathematical Background
	Registration Components
	Rigid Registration
	Metrics
	Normalized Correlation Coefficient (NCC)
	Optimizers

	Deep Learning / Deep Neural Networks
	Introduction
	Neural Network as Function approximation in Reinforcement Learning
	Recurrent Neural Networks (RNN)
	The Problem of Long-Term Dependencies in RNN
	LSTM Networks
	The Core Idea Behind LSTMs
	LSTM Architecture
	Conclusion

	The Reinforcement Learning Problem
	Introduction
	Markov Decision Process
	The episodic reinforcement learning problem
	Partially observed problems
	Policy Gradients
	REINFORCE (Baseline)
	Actor Critic Methods
	Advantage Function


	Related Work
	Learning to learn (L2L)
	Loss Function

	Black box Optimization
	Training of Optimizer

	Evolutionary Algorithm
	Experiments and Results

	Design
	Proximal Policy Optimization Algorithms(PPO)
	Trust Region Methods
	Clipped Surrogate Objective
	Algorithm
	Conclusion


	Implementation
	PPO (pseudocode)
	OpenAI Gym
	Spaces
	GYM Environment

	Programming Language and libraries

	Experiments
	Linear Functions
	2D-Quadratic function (continuous Actions)
	1D-Quadratic function (Discrete Actions)
	2D-Quadratic function (Discrete Actions)
	Rosenbrock Function
	Image Registration


	Discussion
	Learning Rate and Epsilon Decays
	1D-Quadratic function (Continuous Actions)
	1D-Quadratic function (Discrete Actions)
	2D-Quadratic function (Discrete Actions)
	Rosenbrock Function
	Image Registration


	Future
	Bibliography

